Objective
Recent research has uncovered real potential for humans to interact with computers in natural ways by using their body motion, gestures and facial expressions. This has resulted in a huge surge of research within the Computer Vision community to develop algorithms able to understand, model and interpret human motion using visual information. Commercial motion capture solutions exist that can reconstruct the full motion of a human body or the deformations of a face. However these systems are severely restricted by the need to use markers on the subject and multiple calibrated cameras besides being costly and technically complex. Imagine instead the possibility of pointing a camera at a person for a few seconds and obtaining a fully parameterised detailed 3D model in a completely automated way. This 3D model could subsequently be used for animation tasks, to assist physiotherapists in the rehabilitation of patients with injuries or ultimately to guide a robot in a surgical operation. The aim of this project is to bring this scenario closer to reality by conducting the ground-breaking research needed to crack some of the challenging open problems in visual human motion analysis. So far visual human motion tracking systems have typically modelled the human body as a 3D skeleton ignoring the fact that each of its articulated parts is not strictly rigid but can also deform, since they are surrounded by soft tissue, muscles and clothes. Think of a torso performing small twists, a bicep flexing or a face performing different facial expressions. In this grant I are interested in recovering the full detailed 3D shape of the human body, including a model for the supporting 3D skeleton that captures its underlying articulated structure and a collection of deformable models to describe the non-rigid nature of each of its parts. Crucially, I plan to obtain these models without the use of markers, prior models or exemplars --- purely from image measurements.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- medical and health sciences clinical medicine physiotherapy
- natural sciences computer and information sciences artificial intelligence computer vision motion analysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2007-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
WC1E 6BT LONDON
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.