Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Dynamic single-molecule approach to DNA homologous recombination

Objective

The goal of the research is to understand the mechanisms and biological function of complex genome transactions such as homologous recombination. Homologous recombination, the exchange of sequences between homologous DNA molecules, is essential for accurate genome duplication, DNA damage repair and chromosome segregation. Single molecule analysis provides information on intermediate states, functional and structural variability and the distribution of variable states that cannot be recovered from bulk biochemical assays. The random variation in the details of molecular behavior, that we can now determine with single molecule mechanistic studies are of great importance for understanding how relatively simple biochemical activities are combined to create complex and adaptable living systems. Understanding the mechanism of homologous recombination as well as its control requires specific detailed descriptions of the conformational dynamics of the recombinase proteins and their DNA substrates, specifically the assembly and disassembly of the active recombinase-DNA nucleoprotein filament. Recombination proteins labelled with a flourophore will be use in single molecule fluorescence microscopy assays. The main objectives are: 1 Analyze the dynamic rearrangements between DNA and Rad51 to gain insight into the key events that drive DNA strand exchange. 2 Analyze the effect of accessory factors of Rad51 on its assembly/disassembly from DNA to gain insight into mechanisms that limit homologous recombination to appropriate locations. DNA damaging agents, such as ionizing radiation and interstrand DNA crosslinking compounds, provide important treatment modalities against cancer. Among the proteins implicated in repair of DNA damage induced by these agents are the homologous recombination. By analyzing the mechanism through which these proteins cooperate in DSB repair, we expect to provide insights into the molecular assembly pathways of the ‘guardians of the genome’.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-2-1-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM
EU contribution
€ 226 806,85
Address
DR MOLEWATERPLEIN 40
3015 GD Rotterdam
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0