Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

A Systems Biology Approach to Elucidate the Yeast Metabolic Network

Objective

The ultimate goal of systems biology is to generate mathematical models to comprehensively describe the dynamics of a biological system. Among all biochemical and informational systems that operate in cells, metabolism is unique because the composition and topology of the network of metabolic reactions is almost completely known. What is currently poorly understood, is how this system operates, how it is controlled and how it adapts to changing conditions of supply and demand. Most current models of metabolism and of biological processes in general are limited by the incompleteness and the restricted diversity of the data they are based on. In this project I propose to generate, for the first time, quantitative data sets of all metabolic proteins and their regulatory phosphorylation sites in the model organism yeast Saccharomyces cerevisiae, under a defined set of conditions. Such a comprehensive proteomic analysis will be achieved by means of a novel targeted proteomics approach, pioneered in the host group and which I preliminarily developed in the first months of my work. In the context of a well-established collaboration with metabolomics and computational systems biology groups at ETH Zurich, the generated proteomic and phosphoproteomics data on metabolic enzymes will be coupled to quantitative data of the associated mRNA transcripts, metabolites and metabolic fluxes. Integration of these different quantitative data types will be done with a genome-scale mathematical model of the whole yeast metabolism. The data generated will be unprecedented and the research will set us on a path towards the understanding of the control structure of S. cerevisiae metabolism and the identification of key regulation sites that actively control metabolic processes, advancing both the science of systems biology as well as our understanding of a universal biological system.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-2-1-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
EU contribution
€ 178 163,71
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0