Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Classifying the conjugacy relation of the group of C2 diffeomorphisms of the unit circle, and characterizing isometry groups of separable ultrametric spaces

Objective

The first part of the project is concerned with a classification of the orbit equivalence relation E coming from the conjugation action of the group of all diffeomorphisms of class C2 on itself. A well-known example given by Arnold shows that there exist C2 diffeomorphisms of the circle with equal rotation numbers, which are not conjugate by any smooth mapping. This raises a natural question as to how complicated relation E is. Methods coming from Borel reducibility theory will be used to estimate lower and upper bounds for complexity of E. In particular, the following problems will be studied. Is E essentially more complicated than the identity relation? Is D reducible to an equivalence relation with countable equivalence classes? Can D be classified by the isomorphism relation on a class of countable models? The second part of the project is a continuation of a line of research initiated by Gao and Kechris. It is devoted to studying Polish ultrametric spaces, that is, metric spaces satisfying a strong version of the triangle inequality, and their isometry groups. A structure theorem, proved by the executioner of the project, representing each separable ultrametric space as a 'bundle' with an ultrametric base and with homogeneous fibers will be further investigated. Its detailed study and analysis of the limit behavior of involved quotient maps will be used to characterize Polish ultrametric spaces and their isometry groups. This will provide an answer to a question posed by Gao nad Kechris. The implementation of the project will allow the executioner of the project to develop a solid research portfolio in a lively developing field of mathematics, contributing in this way to their lasting reintegration, and to European scientific excellence.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-4-3-IRG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK
EU contribution
€ 75 000,00
Address
UL. SNIADECKICH 8
00-656 Warszawa
Poland

See on map

Region
Makroregion województwo mazowieckie Warszawski stołeczny Miasto Warszawa
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0