Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Clean buildings along with resource efficiency enhancement using appropriate materials and technology

Objective

Clear-up presents a holistic approach to the reducing operational energy use in buildings. By development and novel use of nano-materials it aims to increase energy performance in heating, ventilation, air conditioning (HVAC) and lighting systems, and to improve indoor air quality using catalytic purification. Clear-up’s solutions are designed for retro-fitting existing buildings and of course for new constructions. It will achieve this by addressing four key components which control the indoor environment: • Windows. Clear-up will advance the practical use of shutters and electrochromic window foils which reduce the building cooling load and along with light-guide technology, reduce the need for artificial lighting. • Walls. Clear-up will use photocatalytic materials for air purification and nano-porous vacuum insulation in combination with phase change materials to passively control temperature. • Air Conditioning. Clear-up will advance technologies for demand controlled ventilation and improved air quality. • Sensors and control provide an underpinning technology for Clear-up’s approach. New sensors will be developed, and their use optimised for the operation of smart windows; demand controlled ventilation; and catalytic purification. Clear-up will develop, install, measure and evaluate technological solutions in the laboratory, in a large-scale testing facility and in real world applications. Its approach will be demonstrated at the UN Climate Summit in Copenhagen, 2009. The safety of new materials will be considered; it will propose inputs to standards and environmental product declarations for its technologies. Clear-up will also investigate environmental and economic lifecycles for components and systems. The practical issues of exploitation will be addressed in cooperation with industry bodies ECTP, ECCREDI and ENBRI providing access to large firms and SMEs.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2007-LARGE-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-IP - Large-scale integrating project

Coordinator

EBERHARD KARLS UNIVERSITAET TUEBINGEN
EU contribution
€ 1 345 139,00
Address
GESCHWISTER-SCHOLL-PLATZ
72074 Tuebingen
Germany

See on map

Region
Baden-Württemberg Tübingen Tübingen, Landkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (22)

My booklet 0 0