Project description
FET Open
OPPORTUNITY picks up on the very essential methodological underpinnings of any Ambient Intelligence (AmI) scenario: recognizing (and understanding) context and activity.Methodologies are missing to design context-aware systems: (1) working over long periods of time despite changes in sensing infrastructure (sensor failures, degradation); (2) providing the freedom to users to change wearable device placement; (3) that can be deployed without user-specific training. This limits the real-world deployment of AmI systems.We develop opportunistic systems that recognize complex activities/contexts despite the absence of static assumptions about sensor availability and characteristics. They are based on goal-oriented sensor assemblies spontaneously arising and self-organizing to achieve a common activity/context recognition goal. They are embodied and situated, relying on self-supervised learning to achieve autonomous operation. They makes best use of the available resources, and keep working despite-or improves thanks to-changes in the sensing environment. Changes include e.g. placement, modality, sensor parameters and can occur at runtime.Four groups contribute to this goal. They develop: (1) intermediate features that reduce the impact of sensor parameter variability and isolate the recognition chain from sensor specificities; (2) classifier and classifier fusion methods suited for opportunistic systems, capable of incorporating new knowledge online, monitoring their own performance, and dynamically selecting most appropriate information sources; (3) unsupervised dynamic adaptation and autonomous evolution principles to cope with short term changes and long term trends in sensor infrastructure, (4) goal-oriented cooperative sensor ensembles to opportunistically collect data about the user and his environment in a scalable way.The methods are demonstrated in complex opportunistic activity recognition scenarios, and on robust opportunistic EEG-based BCI systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencescomputer and information sciencesinternetinternet of things
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Topic(s)
Call for proposal
FP7-ICT-2007-C
See other projects for this call
Funding Scheme
CP - Collaborative project (generic)Coordinator
8092 Zuerich
Switzerland