Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Next generation Multi-mechanics Simulation Environment (NextMuSE)

Project description


FET Open

The objective of NextMuSE is to initiate a paradigm shift in the technology of Computational Fluid Dynamics (CFD) and Computational Multi-Mechanics (CMM) simulation software which is used to model physical processes in research and technology development across a range of industries.
NextMuSE relies on a mesh-free method, Smoothed Particle Hydrodynamics (SPH), which is fundamentally different from conventional techniques and can overcome their shortcomings. The NextMuSE paradigm is defined by two characteristics: - accurate robust multi-mechanics modelling in applications where traditional methods fail (e.g. simultaneous fluid and solid mechanics in a ship under extreme wave loading). - an immersive, interactive user interface (ICARUS) to allow the user-engineer to manage and partially automate the extremely complex inputs and outputs of such multi-mechanics simulations.
The objectives will be achieved through 7 work packages.1: Key enhancements of core SPH algorithms.2: Adapted physical modelling of fluids: turbulence, multiphase flow.3: Modelling of fluid-structure interaction.4: High-performance computing: highly efficient scalable algorithms for very large simulations.5: Development of an immersive and highly visual simulation/design environment to interact with the technology.6: Realistic representative applications in the marine, energy and biomedical industries.7: Dissemination, communication and exploitation.
This project will remove technology roadblocks and enable an enhanced and extended role for ICT and HPC in socio-economically important engineering RTD and innovation sectors (including energy, healthcare and transport). Although there are challenging scientific bottlenecks, risk is managed and minimised through the design of the work plan and the selection of the consortium. The risk is balanced by the potential reward for this project, which is a proof-of-concept for a paradigm shift which will open the way for advanced immersive HPC simulation tools, seamlessy integrated into the RTD process for the most challenging engineering problems.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2007-C
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

ECOLE CENTRALE DE NANTES
EU contribution
€ 289 320,00
Address
RUE DE LA NOE 1
44321 Nantes Cedex 3
France

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (8)

My booklet 0 0