Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Ultra-high-Q Physics: Towards single molecules and phonons

Objective

The proposed research program builds on the previously developed ultra-high-Q monolithic micro-resonators by the applicant during his dissertation at the “California Institute of Technology”. These micro-resonators offer unprecedented confinement of light in micro-scale volumes for extended amounts of time and have opened many lab-on-chip applications ranging from nonlinear optics, quantum optics to biochemical sensing. This present proposal is concerned to use ultra-high-Q optical micro-cavities as vehicles to study two novel and emerging research opportunities. The first endeavor investigates the possibility to use radiation pressure to cool a mechanical oscillator to the quantum ground state. The significance of the research program lies in its attempt to exploit the opto-mechanical system as a paradigm for the investigation of quantum processes of mechanical objects – a field which has sparked widespread interest in contemporary physics for quiet some time, but which to date remains experimentally unexplored and which is intimately related to concepts used in fields such as gravitational wave detection or scanning probe techniques. From a conceptual point of view, this research could show how a mechanical, macroscopic object reveals quantum mechanical behavior. Ultra-sensitive measurements are also part of a second, interdisciplinary line of research. To date, only a few widely applied techniques in Biophysics are available for label free detection of ligand-receptor binding, which lack single to resolve single molecule binding events. Building on recent advances of the applicant, the proposed methodology will use membrane functionalized micro-resonators in aqueous solution as novel technique to resolve single binding events. By developing a methodology with which label free single molecule sensitivity in biomolecular recognition can be attained, this research could enable to open new frontiers to Biophysicists.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2007-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
EU contribution
€ 1 189 889,06
Address
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0