Objective
The goal of this project is to study conformally invariant fractal structures from the perspectives of analysis, dynamics, probability, geometry and physics, emphasizing interrelations of these fields. In the last two decades such structures emerged in several areas: continuum scaling limits of 2D critical models in statistical physics (percolation, Ising model); extremal configurations for various problems in complex analysis (multifractal harmonic measures, coefficient growth of univalent maps, Brennan's conjecture); chaotic sets for complex dynamical systems (Julia sets, Kleinian groups). Capitalizing on recent successes, I plan to continue my work in these areas, exploiting their interactions and connections to physics. I intend to achieve at least some of the following goals: * To establish that several critical lattice models have conformally invariant scaling limits, by building upon results on percolation and Ising models and finding discrete holomorphic observables. * To study geometric properties of arising fractal curves and random fields by connecting them to Schramm's SLE curves and Gaussian Free Fields. * To investigate massive scaling limits by describing them geometrically with generalizations of SLEs. * To lay mathematical framework behind relevant physical notions, such as Coulomb Gas (by relating height functions to GFFs) and Quantum Gravity (by identifying limits of random planar graphs with Liouville QGs). * To improve known bounds in several old questions in complex analysis by studying multifractal spectra of harmonic measures. * To estimate extremal behavior of such spectra by using holomorphic motions of (quasi) conformal maps and thermodynamic formalism. * To understand nature of extremal multifractals for harmonic measure by studying random and dynamical fractals. The topics involved range from century old to very young ones. Recently connections between them started to emerge, opening exciting possibilities for new developments in some long standing open problems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences mathematics applied mathematics dynamical systems
- natural sciences mathematics pure mathematics mathematical analysis complex analysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2008-AdG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
1211 Geneve
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.