Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Conformal fractals in analysis, dynamics, physics

Objective

The goal of this project is to study conformally invariant fractal structures from the perspectives of analysis, dynamics, probability, geometry and physics, emphasizing interrelations of these fields. In the last two decades such structures emerged in several areas: continuum scaling limits of 2D critical models in statistical physics (percolation, Ising model); extremal configurations for various problems in complex analysis (multifractal harmonic measures, coefficient growth of univalent maps, Brennan's conjecture); chaotic sets for complex dynamical systems (Julia sets, Kleinian groups). Capitalizing on recent successes, I plan to continue my work in these areas, exploiting their interactions and connections to physics. I intend to achieve at least some of the following goals: * To establish that several critical lattice models have conformally invariant scaling limits, by building upon results on percolation and Ising models and finding discrete holomorphic observables. * To study geometric properties of arising fractal curves and random fields by connecting them to Schramm's SLE curves and Gaussian Free Fields. * To investigate massive scaling limits by describing them geometrically with generalizations of SLEs. * To lay mathematical framework behind relevant physical notions, such as Coulomb Gas (by relating height functions to GFFs) and Quantum Gravity (by identifying limits of random planar graphs with Liouville QGs). * To improve known bounds in several old questions in complex analysis by studying multifractal spectra of harmonic measures. * To estimate extremal behavior of such spectra by using holomorphic motions of (quasi) conformal maps and thermodynamic formalism. * To understand nature of extremal multifractals for harmonic measure by studying random and dynamical fractals. The topics involved range from century old to very young ones. Recently connections between them started to emerge, opening exciting possibilities for new developments in some long standing open problems.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2008-AdG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

UNIVERSITE DE GENEVE
EU contribution
€ 1 278 000,00
Address
RUE DU GENERAL DUFOUR 24
1211 Geneve
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Région lémanique Genève
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0