Objective
We envision to develop a computational method base on first-principles (i.e. ab-initio) and empirical pseudopotentials that is, unlike any other method, able to treat the relevant size range of semiconductor nanostructres (i.e. between 1000 and one million atoms), on an atomistic footing, including dynamical effects at the many-body level. The method will be developed following a bottom-up approach, i.e. starting from the most accurate description available such as density functional theory. The vibrational and electronic properties obtained this way for small clusters consitute the back-bone of the method and will be used to construct a robust and accurate desciption based on classical force fields (for the phonons) and semiempirical pseudopotenitals (for the electrons). The results obtained, including electron-phonon coupling, will then be used in a configuration interaction approach that will give us access to the correlated many-body wave functions of the excitation. The developments lean on developments undertaken by the P.I. in the last 6 years and will be accurate and general; being able to deal with arbitrary shapes and a wide range of materials. From the resulting many-body wave functions (including phonons) a wide range of new physical effects will be available, such as electronic relaxation times, spin relaxation times, temperature effects, Raman spectra, Polaron couplings, photon linewidth, which are key components in fields such as quantum information/computing, spintronics, lasers, nano-electronic devices, photovoltaic and even medicine. Besides its relevance for nanotechnology, the development presented here will have a significant impact for basic science research. Many of the concepts valid in solid-state physics are challenged in the nanometer scale and many fundamental discoveries can be expected that cross the boundary of physics to chemistry and biology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences atomic physics
- natural sciences computer and information sciences computational science
- natural sciences physical sciences electromagnetism and electronics spintronics
- natural sciences physical sciences condensed matter physics solid-state physics
- natural sciences physical sciences electromagnetism and electronics semiconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-IRG-2008
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.