Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Sparse Models, Algorithms, and Learning for Large Scale Data

Project description


FET Open

SMALL will develop a new foundational framework for processing signals, using adaptive sparse structured representations.A key discriminating feature of sparse representations, which opened up the horizons to new ways of thinking in signal processing including compressed sensing, has been the focus on developing reliable algorithms with provable performance and bounded complexity. Yet, such approaches are simply inapplicable in many scenarios for which no suitable sparse model is known. Moreover, the success of sparse models heavily depends on the choice of a "dictionary" to reflect the natural structures of a class of data, but choosing a dictionary is currently something of an "art", using expert knowledge rather than automatically applicable principles. Inferring a dictionary from training data is key to the extension of sparse models for new exotic types of data.SMALL will explore new generations of provably good methods to obtain inherently data-driven sparse models, able to cope with large-scale and complicated data much beyond state-of-the-art sparse signal modelling. The project will develop a foundational theoretical framework for the dictionary-learning problem, and scalable algorithms for the training of structured dictionaries. SMALL algorithms will be evaluated against state-of-the art alternatives and we will demonstrate our approach on a range of showcase applications. We will organise two open workshops to disseminate our results and get feedback from the research community.The proposed framework will deeply impact the research landscape since the new models, approaches and algorithms will be generically applicable to a wide variety of signal processing problems, including acquisition, enhancement, manipulation, interpretation and coding. This new line of attack will lead to many new theoretical and practical challenges, with a potential to reshape both the signal processing research community and the burgeoning compressed sensing industry.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ICT-2007-C
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE
EU contribution
€ 465 915,00
Address
DOMAINE DE VOLUCEAU ROCQUENCOURT
78153 Le Chesnay Cedex
France

See on map

Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (4)

My booklet 0 0