Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Understanding the Origin of Species: Ecological Genomics and Transcriptomics on Oceanic Islands

Objective

The origin of species diversity has challenged biologists for more than two centuries, but despite the large amount of literature on the subject, pivotal questions about speciation remain unanswered. For example, we know that the origin of species must involve genetic separation, most often followed by phenotypic differentiation. Geographic isolation and subsequent genetic separation gives rise to the uncontroversial allopatric mode of speciation. But in theory, populations can become genetically separated without geographical isolation, resulting in the more disputed sympatric mode of speciation. Recently, Savolainen (the applicant of this proposal) and colleagues provided strong evidence for sympatric speciation in a case study of two species of Howea palms on Lord Howe Island, Australia. Here, we will take our research to a much deeper level and tackle novel themes. Innovative approaches will be developed, combining field ecology and genetic modelling, and taking advantage of the most recent advances in genomic technologies such as ultra-high throughput sequencing provided by the Roche 454 and Illumina Solexa platforms. Using Howea as a model system, sequences of their transcriptomes, scans of their genomes and genes expression profiles, we will test the theoretical predictions that only a few genetic loci controlling key traits are necessary for rapid ecological speciation. Extending this study to other taxa and islands, we will ask what combinations of ecological conditions and genomic architectures lead to the evolution of new species? Particularly, how can species originate in the face of gene flow, for example when confined to a minute oceanic island? The project will provide one of the most comprehensive studies of speciation and has the potential to provide a drastically new perspective on this process. It will also shed light on the wide-ranging link between genotype and phenotype, as well as help to manage biodiversity in a sustainable manner.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2008-AdG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
EU contribution
€ 2 415 470,00
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0