Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

FLEXIBLE PRODUCTION TECHNOLOGIES AND EQUIPMENT BASED ON ATMOSPHERIC PRESSURE PLASMA PROCESSING FOR 3D NANO STRUCTURED SURFACES

Objective

Outstanding progress has been made in recent years in developing novel structures and applications for direct fabrication of 3D nanosurfaces. However, exploitation is limited by lack of suitable manufacturing technologies. In this project we will develop innovative in-line high throughput technologies based on atmospheric pressure surface and plasma technologies. The two identified approaches to direct 3D nanostructuring are etching for manufacturing of nanostructures tailored for specific applications, and coating. Major impact areas were selected, demonstrating different application fields. Impact Area 1 focuses on structures for solar cell surfaces. Nanostructured surfaces have the potential to improve efficiencies of cells by up to 25% (rel), having dramatic impact on commercial viability. Impact Area 2 focuses on biocidal surface structures. Increasing concerns about infections leading to the conclusion, that only multi-action approaches for control of infection transfer can be effective. We plan to combine such surfaces with 3D nanostructures, which will both immobilise and deactivate pathogenic organisms on surfaces. Impact Area 3 is the direct growth of aligned carbon nanotubes on electrode surfaces. The material is under investigation for use in high load capacitors which are seen as key components for energy storage systems, e.g. for Hybrid Electric Vehicle. Impact Area 4 focuses on tailored interfaces to achieve durable adhesion on polymer surfaces by 3D nanostructuring and coating. Target is to reduce energy consumption by introducing lightweight materials. The N2P partners have been chosen to ensure a strong capability to exploit and disseminate the outcomes. Involved end-user industries represent high market value segments: photovoltaics, aeronautics, automotive, steel. The consortium includes 7 technology leading SMEs and 4 multi-national industries, cooperating with 9 institutes for industrial research and a public body from 8 European countries.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2007-LARGE-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-IP - Large-scale integrating project

Coordinator

FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG EV
EU contribution
€ 1 396 071,92
Address
HANSASTRASSE 27C
80686 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (21)

My booklet 0 0