Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Mesoscopic Quantum Noise: from few electron statistics to shot noise based photon detection

Objective

We propose innovative approaches to electronic quantum noise going from very fundamental topics addressing the quantum statistics of few electrons transferred through conductors to direct applications with the realization of new types of versatile broadband photon detectors based on photon-assisted shot noise. We will develop electron counting tools which will not only allow to full characterization of electron statistics but also open the way to new quantum interference experiments involving few electrons or fractional charge carriers and will question our understanding of quantum statistics. Generation of few electron bunches will be obtained by the yet never done technique of short voltage pulses whose duration is limited to few action quanta, one quantum for one electron. Detection of electron bunches will be done by an unprecedented technique of cut and probe where carriers are suddenly isolated in the circuit for further sensitive charge detection. Using highly ballistic electron nanostructures such as Graphene, III-V semiconductors with light carriers, Carbone Nanotubes or simply tunnel barriers, we will bring mesoscopic quantum noise effects to higher temperature, energy and frequency range, and thus closer to applications. Inspired by late R. Landauer s saying: the noise IS the signal we will develop totally new detectors based on the universal effect of photon-assisted electron shot noise. These versatile broadband detectors will be used either for on-chip noise detection or for photon radiation detection, possibly including imaging. They will operate above liquid Helium temperature and at THz frequencies although projected operation includes room temperature and far-infrared range as no fundamental limitation is expected. The complete program, balanced between very fundamental quantum issues and applications of quantum effects, will open routes for new quantum investigations and offer to a broad community new applications of mesoscopic effects.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2008-AdG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
EU contribution
€ 1 999 843,44
Address
RUE LEBLANC 25
75015 Paris
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0