Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

RAS superfamily and the interactions with their effectors: functional specificity

Objective

Ras genes code for small GTPases that act as GDP/GTP-regulated molecular switches. This exchange induces a conformational change that allows them to interact with their downstream effectors, and thus participate as central control elements in signal transduction. Mutated forms of the Ras oncoprotein are found in more than 30% of all human cancers, justifying the extensive research on them. Ras effectors have convergently developed a common subdomain in their unrelated overall structure for their interaction with Ras. Although detailed knowledge about the thermodynamics and dynamics of the interaction with Ras has accumulated, the molecular mechanism at atomic detail of effector activation and thus specificity is still elusive. Crystallographic, NMR, and other spectroscopic studies show that the flexibility of their so-called “switch regions” majorly contributes to the adaptability of the Ras proteins to their various partners, including disorder-to-order transitions upon binding to their partners, and “structural polymorphism” in their different complexes and in the unbound forms. This incorporates another degree of difficulty on the understanding of the Ras:effector association. Although some studies have been previously carried out in order to rationalize the specificity of the Ras proteins towards their different effectors, they have been based only in the availability of Ras:effector crystal structures and taking a rather static point of view. In this work we intend to extend this to a large-scale bioinformatics and computational study, including driven-docking of Ras proteins and their effectors for which no complex structure is available but biological data supports complex formation. In a further step, Molecular Dynamics simulations both on the unbound partners and on their complexes will yield information accounting both for the binding affinity and for the intrinsic plasticity crucial in the recognition and regulation of Ras pathways

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-2-2-ERG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-ERG - European Re-integration Grants (ERG)

Coordinator

FUNDACION SECTOR PUBLICO ESTATAL CENTRO NACIONAL INVESTIGACIONES ONCOLOGICAS CARLOS III
EU contribution
€ 30 000,00
Address
C MELCHOR FERNANDEZ ALMAGRO 3
28029 Madrid
Spain

See on map

Region
Comunidad de Madrid Comunidad de Madrid Madrid
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0