Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

More Affordable Aircraft structure through eXtended, Integrated, and Mature nUmerical Sizing

Objective

Even though composite materials are more and more used in modern airframes, many significant improvements are still achievable. Firstly, the substitution of the assembly of many small composite parts by a single one-shot large part provides additional weight reduction. Secondly, the final assembly line process must be adapted to composite properties (lack of ductility, stiffness). Thirdly, if the appropriate level of confidence and cycle time was available, Simulation-based design would provide a faster and less expensive path to find the optimal structures than the current development process, which relies on physical tests. Lastly, more conductive composites are necessary to avoid additional weight for system protection. The aim of MAAXIMUS (More Affordable Aircraft structure through eXtended, Integrated, & Mature nUmerical Sizing) is to demonstrate the fast development and right-first-time validation of a highly-optimised composite airframe. The MAAXIMUS objectives related to the highly-optimised composite airframe are: 50% reduction of the assembly time of large composite sections; 10% reduction of manufacturing & assembly recurring costs; 10% reduction of the structural weight. The MAAXIMUS objective related to a faster development is to reduce by 20% the current development timeframe of aircraft structures and by 10% the corresponding cost. The MAAXIMUS objective related to the right-first-time structure is to additionally reduce the airframe development costs by 5% through the delivery of a predictive virtual test capability for large composite structures with a quantified level of confidence, to avoid late and costly changes This will be achieved through coordinated developments on a physical platform, to develop and validate the appropriate composite technologies for low weight aircraft and a virtual structure development platform, to identify faster and validate earlier the best solutions through major improvements in airframe Simulation-base design.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-AAT-2007-RTD-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-IP - Large-scale integrating project

Coordinator

AIRBUS OPERATIONS GMBH
EU contribution
€ 2 983 285,00
Address
KREETSLAG 10
21129 Hamburg
Germany

See on map

Region
Hamburg Hamburg Hamburg
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (59)

My booklet 0 0