Objective
The project partners will develop a versatile and efficient software tool based on a recently introduced method - Dynamical Energy Analysis (DEA). This will yield significantly improved algorithms and software solutions to describe wave energy distributions in complex structures in a mechanical engineering context for small to medium wave lengths. The wave problems considered range from acoustics to vibrational dynamics and elastic deformations. Midfrequency problems are one of the few areas of great importance where standart methods in computer aided engineering (CAE) modelling fail and no efficient and reliable methods exist. The new approach based on wave chaos ideas has the potential to fill this gap and will serve an enormous demand in the mechanical engineering industry. Applying the to be developed method in CAE studies will lead to huge cost and development time savings and will lead to better products in terms of noise characteristics and vibration controll. DEA will be further developed, efficiently implemented numerically, integrated into an advanced software package and applied to challenging vibro-acoustical situations in an industrial context. The focus will be on mechanical and acoustic wave problems ranging from acoustic radiation in small scale plant machinery to vibration dynamics and vehicle noise in large built-up structures such as cars and airplanes. Joint efforts by the two full partners, the University of Nottingham and the SME inuTech (specialised CAE) will lift this new, revolutionary method from its academic roots into the sphere of industrial applications transforming it into a powerful tool for solving engineering problems in the mid to high frequency regime. Associate partners from the academic and industrial sector will support the efforts by giving expert advice and by providing experimental data and facilities for testing purposes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences software
- natural sciences physical sciences acoustics
- engineering and technology mechanical engineering
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-IAPP-2008
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MC-IAPP - Industry-Academia Partnerships and Pathways (IAPP)
Coordinator
NG7 2RD Nottingham
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.