Objective
Atmospheric plasma techniques as processing methods have a number of advantages which include their ability to tailor the surface chemistry at the nanometre level. As such, the plasma treatments are energy efficient, reproducible and environmentally clean. In-line, continuous reel-to-reel processing equipment has been developed in the last 5 years. The wide scale application of this nano-processing technology in the pre-treatment of packaging materials in reel-to-reel processing has however been severely limited. One of the main reasons for this is the relatively slow processing velocity for coating depositions. In general, the velocities need to be increased by 2-5 fold in order to fully exploit the new nano-processing techniques. This proposal will address these issues in order to assist in the transfer of atmospheric plasma processing technology from the laboratory scale to industrial level in the packaging industry. Special attention will go out to the very promising combination with sol-gel technology. A method and equipment for in-line plasma deposition of high-barrier bio-based coatings to be applied in conjunction with extrusion coating at industrial line speeds will be developed. The approach will exploit sol-gel coatings applied on the substrates by plasma deposition. The substrates include paper, cardboard and plastic films. Renewable, biobased and biodegradable materials will be used as extrusion coatings. The project aims at replacement of fluoropolymer based grease barrier materials with sol-gel coated bioplastics and substitution of non-renewable barrier packaging films with renewables based materials in general. To achive these objectives, several leading European institutes and universities in atmospheric plasma deposition technology (VITO and TUE), sol-gel development (FhG-ISC and VTT) and extrusion coating and analytics development (TUT and JSI) together with a range of industrial participants are incorporated in the proposal.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesphysical sciencesplasma physics
- engineering and technologymaterials engineeringcoating and films
- engineering and technologyindustrial biotechnologybiomaterialsbioplastics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Programme(s)
Call for proposal
FP7-NMP-2007-LARGE-1
See other projects for this call
Funding Scheme
CP-IP - Large-scale integrating projectCoordinator
33720 Tampere
Finland