Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Electron-scale dynamics in chemistry

Objective

The target of the proposal is the first experimental demonstration of attosecond coherent control of electron motion in many-particle systems. The past decade has seen remarkable advances in the field of coherent control of chemical reactions thanks to the application of femtosecond technology; I propose to use the emerging attosecond technology to achieve coherent control of photodissociation reactions on a purely electronic scale. I will mainly concentrate on molecules with biological interest. The success of the project will be based on the possibility to initiate and control the sub-femtosecond electronic motion in large molecules, by using high-intensity isolated attosecond pulses. Such electron motion precedes and determines the subsequent nuclear rearrangement, which ultimately leads to the chemical change. In this way it will be possible to control in a direct way the outcome of a chemical reaction, which is one of the central problems in modern chemistry. A crucial benchmark of the project, substantially beyond the current state-of-the-art in Attosecond Science, will be the experimental demonstration of attosecond pump / attosecond-probe measurements, which for the present are not technically feasible. Electron dynamics will be measured, with attosecond resolution, in many-particle systems, ranging from simple molecules to complex bio-molecules.
The application of attosecond pulses and the development of attochemistry techniques for the investigation of the primary electronic steps of chemical processes, is a completely new and challenging research field, with tremendous prospects for both fundamental research and technology. In particular, the attosecond coherent control of charge localization in bio-molecules can offer unique information on the mechanisms at the basis of biological signal transmission or on the processes leading to damaging of complex biological molecules (from polypeptides to proteins and DNA).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2008-AdG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

POLITECNICO DI MILANO
EU contribution
€ 2 446 200,00
Address
PIAZZA LEONARDO DA VINCI 32
20133 Milano
Italy

See on map

Region
Nord-Ovest Lombardia Milano
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0