Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

In silico Rational Engineering of Novel Enzymes

Objective

IRENE project aims at overcoming existing bottlenecks for a broader diffusion of biocatalysis and at accelerating the sustainable innovation of chemical industry by developing computational methods and strategies that will enable to rationally design and produce the next generation of biocatalysts for industrial applications. The consortium is funded on the combination of robust multidisciplinary expertise from EU, Russia and Uzbekistan. Due to the interaction between theoretical groups and experimentalists all computational tools used in this project will be validated by experiments. Failures and successes will be used for methods’ evaluation and tuning, in an iterative process that will lead to new methods but also to the definition of practical guidelines, for any specific enzyme design issue. The convergence of different expertise will face 4 main tasks: 1) fast rational design of efficient biocatalysts; 2) fast and efficient in silico screening of available enzymes/mutants to exploit catalytic potential of existing biocatalyst and providing quantitative parameters describing enzyme’s efficiency; 3) fast substrate-screening and rational substrate engineering; 4) understanding molecular basis of biocatalyst’ action and properties. IRENE will pursue these objectives by taking advantage of computational strategies used in different disciplines and integrate them in an unified concept for studying enzyme catalysis. The four main families of computational methods, Quantum Mechanics, Molecular Mechanics, Quantitative Structure Activity Relationships and Bioinformatics, will used in an integrated approach. The project will have three major design subjects: 1) introduction of new activities in specific enzyme scaffolds (reaction promiscuity); 2) improvement of catalytic activity towards specific targets (substrate promiscuity); 3) the redesign of enantioselectivity. For each subject the work will focus on different specific enzymatic activities of industrial relevance.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-KBBE-2008-2B
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-SICA - Collaborative project for specific cooperation actions dedicated to international cooperation partner countries (SICA)

Coordinator

UNIVERSITA DEGLI STUDI DI TRIESTE
EU contribution
€ 520 225,00
Address
PIAZZALE EUROPA 1
34127 Trieste
Italy

See on map

Region
Nord-Est Friuli-Venezia Giulia Trieste
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (10)

My booklet 0 0