Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Mitochondrial membrane organization by protein scaffolds and lipid dynamics

Objective

Biological membranes are complex structures built up of a multiplicity of membrane lipids and proteins controlling essential cellular processes. This is exemplified by mitochondria, dynamic double-membrane bound organelles, with essential roles in diverse metabolic and cellular signalling pathways. The mitochondrial inner membrane is considered to be the protein richest cellular membrane, whose functional impairment is associated with aging, myopathies and diverse neurological disorders in human. Recent evidence from our group revealed essential roles of large, ring-like prohibitin complexes in the inner membrane for embryonic development in mice, cell proliferation, resistance against apoptosis, and the maintenance of mitochondrial cristae. Prohibitins comprise a conserved and ubiquitously expressed protein family and are suggested to serve as protein scaffolds in the inner membrane. Defining the network of genetic interactions in yeast, we could establish that prohibitin function depends on the supply of the non-bilayer phospholipids cardiolipin and phosphatidyl ethanolamine and on intramitochondrial lipid trafficking. These findings indicate that mitochondrial function and ultrastructure requires a defined spatial organization of the inner membrane, which is maintained by a defined lipid composition and prohibitins serving as protein scaffolds. Here, we propose a comprehensive analysis of the function of prohibitins and of novel components involved in mitochondrial lipid trafficking and phospholipid biosynthetic pathways. These studies will include genetic as well as biochemical and proteomic approaches and employ both yeast and murine models to integrate the molecular understanding of functionally conserved processes into the physiological context. As components of this system have been linked to cardiomyopathies and diverse neurological disorders, our studies are likely to provide new insight into pathomechanisms of human disease.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2008-AdG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

UNIVERSITAT ZU KOLN
EU contribution
€ 1 878 000,00
Address
ALBERTUS MAGNUS PLATZ
50931 KOLN
Germany

See on map

Region
Nordrhein-Westfalen Köln Köln, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0