Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

BIOactive highly porous and injectable Scaffolds controlling stem cell recruitment, proliferation and differentiation and enabling angiogenesis for Cardiovascular ENgineered Tissues

Objective

Congenital and acquired diseases of the heart are the leading causes of morbidity and mortality in the world today; 7.2 million people die each year due to coronary heart disease, being the first cause of mortality in population above 60 years old, and the second cause after HIV in world wide young population. There is an urgent demand for new methods to repair and replace damaged cardiovascular tissues. One of the most promising ways to achieve this goal is the development of regenerative therapies aided with novel intelligent nanobiomaterials such as bioactive scaffolds. The overall objective of this project is the development of innovative bioactive polymeric scaffolds able to guide tissue formation from dissociated stem cells, for engineering autologous cardiovascular replacements, namely vascular tissues, heart valves and cardiac muscle. Two different strategies will be followed to approach creating new engineered tissue: 1.In vitro tissue engineering: according to the most frequent tissue engineering paradigm, cells will be seeded on a scaffold composed of synthetic polymer or natural material and the tissue will be matured in vitro in a bioreactor, in order to obtain a construct that can be implanted in the appropriate anatomic location as a prosthesis; 2.In vivo tissue engineering: unseeded scaffolds that attract endogenous cells and control cell proliferation and differentiation will be implanted to repopulate and remodel an altered cardiovascular tissue. The strong innovative content of the project is in the realisation of multifunctional scaffolds which can guide complex cellular processes such as adhesion, proliferation and differentiation, processes fundamental for tissue regeneration. It is therefore necessary to design integrated material scaffolds and culture environments, which can appropriately confer biochemical, morphological, electrical and mechanical stimuli to a developing tissue.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2007-LARGE-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-IP - Large-scale integrating project

Coordinator

UNIVERSITA DI PISA
EU contribution
€ 1 157 800,00
Address
LUNGARNO PACINOTTI 43/44
56126 PISA
Italy

See on map

Region
Centro (IT) Toscana Pisa
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (17)

My booklet 0 0