Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Modular design of organocatalysts by combination of subunits effective in complementary catalytic mechanisms

Objective

The selective catalysis by conventional and simple organic molecules, despite of its simplicity, has created an extraordinary impact on chemistry. Not only the continuous emergence of organocatalysts increases the availability of tools for the efficient synthesis of new products, but also contributes to the understanding of the mechanisms of actions of more complicated catalysts, as for example, the relevant natural enzymes.


The first organocatalytic were discovered almost by chance, after the examination of the behavior of (sometimes well-known) natural products (as, for example, proline) with conventional reactants. Nevertheless, the discover of a second generation of organocatalysts requires a careful design based on the knowledge of the reaction mechanisms. This design usually consists in the modification of existing and successful organocatalyst, to enhance (or suppress) few of its characteristics.


In contrast, in this proposal we suggest the employment of a modular approach to this design, consisting first in the identification of the chemical units responsible for the catalysis, and secondly in a simple design of the correct combination of these fragments, according to the mechanism of the desired reaction. In the first step, the fragments responsible for catalysis will not only be inspired in the wide spectra of organocatalyst published so far, but also in the identification of the role that different aminoacid residues plays in the overall catalytic activity of enzymes. This open the possibility of obtaining an extremely valuable information of the enzymatic mechanism based on the mechanism of the synthetic, modular, organocatalysts, which has to be considered very positively jointly with the relevance of providing new catalysts to the arsenal of synthetic organic procedures.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-ERG-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-ERG - European Re-integration Grants (ERG)

Coordinator

UNIVERSIDAD DE SALAMANCA
EU contribution
€ 45 000,00
Address
CALLE PATIO DE ESCUELAS 1
37008 Salamanca
Spain

See on map

Region
Centro (ES) Castilla y León Salamanca
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0