Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

REDOX AND CONDUCTING ROUTING IN MOLECULAR ELECTRONICS. NANOSCALE ARCHITECTURES AND NOVEL PHENOMENA

Objective

Recent developments in molecular electronics and nanotechnology, in general, offer the promise of devices, of great relevance to information technologies, with unprecedented capabilities including memory devices with extraordinary storage capacity as well as circuit elements of vanishing size and superlative speed. Some of the molecular entities that have shown particular promise, to date, include donor/acceptor (D/A) assemblies, transition metal complexes and others. Of particular importance has been our ability to encode information and/or achieve electronic functionality by the storage or movement of charges. This proposal addresses two separate projects which are part of general investigations of nanoscale materials chemistry. The first project will focus on the development of molecular architectures at the nano-scale level toward molecular electronics applications. Molecular switching systems will be investigated and their capability to act as molecular wire allowing the electrons flow through the conjugated system will be tested. Upon establishment of their photoelectrochromic properties, binuclear metallic complexes will be synthesized to study of intramolecular electron transfer through mixed-valence species. By precisely modulating the spacing in between the redox units, we will investigate, with unprecedented control, self-exchange rates in redox reactions, the distance dependence of electron transfer, and photoinduced electron transfer. Subsequently, we will proceed to immobilize the binuclear compounds connected through the corresponding switch on gold or platinum surfaces by taking the advantage of the ability of thiol or nitrile functional groups to bind properly on such surfaces. We thus propose a seed project where we will explore the two areas described above and assess their potential utility as a means of reversibly and reproducibly making contact to nanostructures, for information encoding and as conduction modulators.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IEF-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

UNIVERSITE JOSEPH FOURIER GRENOBLE 1
EU contribution
€ 168 279,59
Address
Avenue Centrale, Domaine Universitaire 621
38041 GRENOBLE
France

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0