Objective
Understanding the Physics of modern materials on a fundamental level is a key ingredient in the quest to develop novel materials with desired, tailored properties. In this sense, polymers, are in enormous interest nowadays, due to their numerous applications in biology and industry. The development of experimental techniques, such as atomic force microscopy (AFM) and optical tweezers, allow us to manipulate the topology of macromolecules, including the most common biological polymer, DNA. Topological constraints on the polymers are an universal feature that can influence the properties of individual macromolecules and solutions of the same. Their analytical consideration is hindered, i.a. by the difficulty to include topological constraints in the Hamiltonian. Computer simulations offer an alternative. Previous work has focused, mainly, in knotting probabilities with lattice models in three and two dimensional models. We propose the approach of performing computer simulations in the continuum, to investigate the structural properties of ring polymer solutions with topological constraints and predict the correlations, structure and thermodynamics of the system. To accomplish this project, we will develop suitable coarse-grained techniques and advanced programming to sample the properties of ring polymer solutions in ways that respect the topological constraints. Further, we propose a novel development of the blob technique for topological constraints in dilute and semidilute solutions. The goals of the proposal is, on the one hand, to calculate accurate effective interaction potentials acting between suitably chosen coarse-grained degrees of freedom of the rings, greatly facilitating thereby their study, and to study the effects of knots on the quantitative characteristics of the effective potential and thus on the structure and thermodynamics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences thermodynamics
- natural sciences mathematics pure mathematics topology
- natural sciences chemical sciences polymer sciences
- natural sciences physical sciences optics microscopy
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-PEOPLE-IEF-2008
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
1010 Wien
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.