Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

High Energy Interactions: From Colliders to Cosmic Rays

Objective

The years 2007 and 2008 will mark the completion of the Pierre Auger observatory and the start of the Large Hadron Collider (LHC) at CERN, respectively. Whereas the former has been built to uncover the sources of ultra-high energy cosmic rays, the latter is designed to test the Standard Model of particle physics. In both experiments, the use of Monte Carlo (MC) models to describe hadronic interactions is essential. In CR experiments, the measured properties of extensive air showers can be connected to the properties of the primary particle only via hadronic MC models. At present, the poorly known interaction models prevent a reliable determination of the primary type and its energy. Thus, an improvement of present day CR interaction models is an important and urgent task. This improvement will become possible soon, since the LHC experiments will deliver for the first time a experimental data in the kinematical region important for CR experiments. This projects aims to use these data to test and to develop further the existing QGSJET simulation. It is planed to include into QGSJET nonlinear interaction effects, to generalize the model to photo- nuclear interactions, and to account for higher twist QCD effects. Apart from its importance for a reliable extrapolation towards the very high CR energies, such a development will have an interdisciplinary aspect, opening the way for numerous applications in the collider physics. A self-consistent model like QGSJET that allows one to calculate within the same scheme total and diffractive cross sections, and to treat various hadronic final states, can be applied in collider experiments both for the general studies of hadronic interactions, and for more dedicated as, e.g. diffractive jet production. Thus the aim is to develop QGSJET to a truly universal simulation, able to describe collider data from LHC as well as to contribute to a more reliable determination of the primary type and its energy in UHECR experiments.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2007-2-1-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
EU contribution
€ 279 239,42
Address
HOGSKOLERINGEN 1
7491 TRONDHEIM
Norway

See on map

Region
Norge Trøndelag Trøndelag
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0