Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Metal catalysed C–H bond activation strategies for chemical synthesis & cancer biology

Objective

Chemical synthesis relies on the presence of functional groups to control the formation of new bonds. The area of catalytic C–H bond functionalisation offers a pioneering opportunity to develop highly efficient, ‘green’ and new chemical transformation that will be pivotal in the future development of chemical synthesis. While we are not suggesting that this approach will replace the conventional tactics of molecule assembly it does offer the synthetic chemist the chance to explore completely unknown strategies. More specifically, it allows us to put the standard rulebook of disconnections to one side and invent a new set of reactions that allow us to break down a molecule without needing to locate a functional group in the synthons. Breaking a C–C, C–N or C–O bond back to a number of C–H bonds represents the pinnacle of modern synthetic chemistry. To achieve this would allow metal catalysed C–H bond functionalisation strategies to offer a conceptually new approach to synthesis that will compliment conventional synthesis and enable us to move a step closer to being able to assemble any desired molecule. As part of this proposal we aim to develop a metal catalyzed C–H bond functionalization strategy that will enable the rapid and flexible synthesis of the intriguing tubulin destabilizing agent, rhazinilam. Furthermore, we will also investigate a totally unprecedented natural product re-arrangement strategy that enables the facile conversion of the rhazinilam framework into the aspidospermidine framework. This rearrangement blueprint, that the Host group name ‘retro-biosynthesis’ as it goes against the proposed classical biosynthetetic pathway, provides immediate access to a family of compounds (the vinca alkaloids) that have potent biological activities in cancer medicine.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IIF-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
EU contribution
€ 182 484,78
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0