Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Control Variates for Markov Chain Monte Carlo Variance Reduction

Objective

Research in numerous scientific fields, including many of the fundamental research frontiers in science and engineering, has produced large empirical data sets with highly complex structure. There, the search for efficient ways of detecting and evaluating relevant information is currently one of the dominant problems, and the use of sophisticated statistical methods has been advanced as a necessary and central part of the analysis. In particular, recent advances in Markov chain Monte Carlo (MCMC) methods have revolutionized statistical analysis, vastly increasing its impact. But in certain important classes of applications, MCMC algorithms fail. The core aim of the proposed work is to battle the main obstacle for their successful application, namely their slow convergence rate. We propose the development of a new theoretical and methodological approach for MCMC variance reduction, based on control variates. This has been considered an important but very difficult area, and it remains virtually virgin territory. Nevertheless, we have exciting preliminary results clearly showing that, in certain cases, the variance of common MCMC algorithms is reduced by a factor of as much as a million. The fundamental objectives of the proposed research are: 1) To develop the necessary mathematical foundation for the application of control variates to Markov chains; 2) Introduce generic methodologies for the direct use of control variates in all the major families of statistical MCMC algorithms currently used in applications; 3) Apply these new methodologies to make significant contributions across the range of scientific areas that require intensive use of statistical computing via MCMC, including genetics, finance, engineering, and medicine. In view of the enormous practical importance of the applications considered, the potential impact of even moderate theoretical or methodological advances can hardly be overestimated.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IOF-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS - RESEARCH CENTER
EU contribution
€ 198 652,06
Address
KEFALLINIAS STREET 45
112 57 ATHINA
Greece

See on map

Region
Αττική Aττική Κεντρικός Τομέας Αθηνών
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0