Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Intestinal, Liver and Endothelial Nanoparticle Toxicity Development and evaluation of a novel tool for high-throughput data generation

Objective

The InLiveTox project will form an interdisciplinary consortium at the European level, together with a key American research group to develop an improved in vitro model for the study of nanoparticle (NP) uptake, transport and cellular interaction, thus advancing our understanding of NP toxicity. Rather than repeat what has, or is being done in the field of aerosol NP and lung toxicology, InLiveTox will focus on the impact of NP exposure via ingestion, in the healthy and diseased gastrointestinal (GI) tract, vascular endothelium and liver. The key questions in this study are: (i) How do these tissues individually respond to NPs? (ii) How do the interactions between the different tissues modulate their responses? (iii) How does inflammation affect the toxicity of NPs and their ability cross the intestinal barrier? (iv) Which physico-chemical characteristics of NPs influence their uptake by intestinal epithelial cells and their subsequent interactions with endothelial and liver cells? The objective of InLiveTox will be to develop a novel modular microfluidics-based in vitro test system modelling the response of cells and tissues to the ingestion of NPs. Cell culture modules of target tissues such as the GI tract, the liver and the endothelium will be connected via a microfluidics system so that knock-on and cross talk effects between organs and tissues can be monitored. A major innovative aspect of the InLiveTox project pertains to the implementation of biological tissue models in a microfabricated compartmental cell culture system that allows multiple cell types to be addressed and investigated in combination. This system will be much easier, more convenient and ethically less questionable than animal testing, as well as more relevant than the in vitro single cell /co-culture models currently used. For this study, applications of the model will focus on NP toxicology, but the system could also be widely used in various applications of toxicology and pharmacology.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-NMP-2008-SMALL-2
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP-FP - Small or medium-scale focused research project

Coordinator

CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHNIQUE SA - RECHERCHE ET DEVELOPPEMENT
EU contribution
€ 609 460,00
Address
RUE JAQUET DROZ 1
2000 NEUCHATEL
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Espace Mittelland Neuchâtel
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (8)

My booklet 0 0