Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Alpha-Catenin regulatory properties and functions during Zebrafish development

Objective

Adherens junctions (AJ) play key roles in cell-cell adhesion, cell migration and cell signaling in a variety of biological processes. AJ are dynamic structures composed of cell-cell adhesion proteins (cadherin super-family), associated adaptor proteins (alpha-, and beta-catenin) and other proteins (p120) that locally regulate the actin cytoskeleton. The functions of two components of the AJ, cadherins and beta-catenin, are well understood, but the function of alpha-catenin is not. Significantly, Professor Nelson’s laboratory identified new functions for alpha-catenin that may be particularly important during cell rearrangements. An important, unanswered question is how these AJ are regulated during complex cell rearrangements when cell-cell contacts are maintained as cells migrate. We propose to combine classical zebrafish methodologies with cell biochemical and biophysical approaches, and high resolution live cell imaging to define mechanisms underlying epithelial cell rearrangements driven by remodeling and stabilization of AJ during different phases of zebrafish development. This project embodies a unique research plan for the candidate in which he will examine the dynamics of cell adhesion and migration in zebrafish embryogenesis by initially applying biochemical and cell biology strategies developed in Professor Nelson’s laboratory at Stanford University, and subsequently use biophysical, imaging and genetic methods developed in Dr. Gilmour’s laboratory at the EMBL. Zebrafish is an established model system for genetics and development biology, and is emerging as model for cell biology studies; this project proposes to push these boundaries further by using strategies developed from biochemical and biophysical studies. The overall aim of the project is, therefore, to provide a novel training platform for the Fellow, Dr. Schepis, using different experimental approaches provided by the Nelson and Gilmour laboratories.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IOF-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

KING'S COLLEGE LONDON
EU contribution
€ 241 291,23
Address
STRAND
WC2R 2LS London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0