Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-27

Quantifying the effects of vegetation change on surface temperature change

Objective

Global climate is changing rapidly, and vegetation distribution is shifting as a consequence. Vegetation change feeds back to climate change by altering the surface albedo, soil heat flux, and sensible and latent heat flux, and thereby the surface energy balance and surface temperature (Ts). For these reasons, perturbations to the radiation balance due to vegetation cover change have been argued to be as important as changes in atmospheric dynamics and composition for global and regional temperature, yet the mechanisms by which vegetation change alters Ts across time and space are rarely investigated. Here, we propose to quantify the role of land cover change on Ts change in global ecosystems using the FLUXNET database with a focus on the European sub-arctic. The purpose is to explore the mechanisms that result in Ts change to build mechanistic understanding of these processes using global examples. The focus on sub-arctic ecosystems builds from excellent data coverage from the IPY-ABACUS project and European collaborators, and is pertinent given that high-latitude ecosystems are currently experiencing the most acute effects of global change. The analysis builds upon a recent manuscript by some of the proposal team that employed a partial derivative analysis of the surface energy balance to determine that abandoned field to forest transition had a cooling effect on the land surface as the cooling effects of enhanced evapotranspiration outweighed warming effects from decreased albedo on the annual time scale. Regional findings will then be coupled to the Ts product from the MODIS satellite to quantify the effects of recent arctic greening and drought on the surface radiation balance and global climate. We envision that this study will improve representation of the land surface in general circulation models and improve detailed regional climate models that couple climate and vegetation change.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IIF-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

THE UNIVERSITY OF EDINBURGH
EU contribution
€ 172 434,64
Address
OLD COLLEGE, SOUTH BRIDGE
EH8 9YL Edinburgh
United Kingdom

See on map

Region
Scotland Eastern Scotland Edinburgh
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0