Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Voltage and calcium dynamics and synaptic transmission within neuronal microcircuits in the vestibular cerebellum

Objective

A fundamental goal of neuroscience is to understand how neurons communicate and encode information. Information transfer between neurons is classically thought to be mediated through rapid all-or-none membrane potential changes, called action potentials (APs), which lead to presynaptic calcium entry and neurotransmitter release. Recently, however, analog transmission has been detected through passive propagation of subthreshold depolarization down axons. Dendrites too exhibit active and passive properties. Technical constraints have made electrophysiological recordings from fine neuronal processes difficult, but advancements in optical imaging have opened avenues for monitoring fluctuations in membrane voltage and calcium signals with increased temporal and spatial resolution. The laboratory where I will do my postdoctoral work is developing novel methods for optical detection of membrane voltage. We will use these optical techniques to study both subcellular membrane potentials and rapid intracellular calcium changes in fine axonal and dendritic processes. The vestibulocerebellum is the oldest part of the cerebellum and processes specific proprioceptive information. This region is anatomically well-defined, with clearly identifiable cell types. While circuit function and cell connectivity in this region are well understood, little is known about how information is processed within the granule cell (GC) layer. Notably, these cells are electrically compact and may exhibit analog signaling. This work will provide novel insight into depolarization and calcium signaling in GC axons and fine dendrites of inhibitory stellate cells that they target. I will address the following questions: 1. Do subthreshold depolarizations propagate and elicit calcium influx in GC axon terminals? 2. Do subthreshold depolarizations influence neurotransmitter release in GC axon terminals? 3. How do APs and subthreshold depolarization propagate and sum along thin dendrites of stellate cells?

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IIF-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
EU contribution
€ 166 011,55
Address
RUE MICHEL ANGE 3
75794 PARIS
France

See on map

Region
Ile-de-France Ile-de-France Hauts-de-Seine
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0