Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Gratings in air-core photonic bandgap fibres for applications within communications, lasers and sensors

Objective

This project aims to inscribe novel gratings, including fibre Bragg gratings and long period fibre gratings, within air-core photonic bandgap fibres (PBFs) and to systematically investigate their applications within optical communications, fibre lasers and sensors. If successful the project will open the door to a host of new grating-based devices. This project will address the fundamental problem of how to induce a periodic index modulation that can be experienced by an optical mode propagating within an air core – a problem that has seriously obstructed the development of gratings and grating-based devices in air-core PBFs for the past decade. I propose to investigate several promising techniques for perturbing/deforming periodically the air holes along the fibre axis with either a CO2 laser, or a femtosecond laser. In addition, I shall develop a special air-core PBF with a photosensitive core wall that should allow grating inscription using the common UV laser exposure technique. Air-core PBF gratings are quite distinct from any former gratings in index-guiding fibres and have unique optical properties due to the air core. Moreover, the unique microstructure in air-core PBFs will allow thermo- or electro-optic polymers and other advanced materials to be incorporated into the air holes/core, offering a new platform for developing innovative communication and sensing devices. Active and passive devices such as in-fibre polarisers, tunable filters, and pulse compressors could be used to develop next generation all-optical fibre communication networks. The smart sensing elements to be developed, especially gas, biochemical, and biophotonic sensors, could be used to monitor environmental pollution, gas concentration, water quality, and the health of railways, bridges, building, and mines. Such applications will greatly promote communication, laser and sensing technologies and should lead to significant economic and societal benefits to Europe.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IIF-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

UNIVERSITY OF SOUTHAMPTON
EU contribution
€ 246 983,34
Address
Highfield
SO17 1BJ Southampton
United Kingdom

See on map

Region
South East (England) Hampshire and Isle of Wight Southampton
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0