Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Electromechanical quantum coherent systems

Objective

At a low temperature, nearly macroscopic quantum states can be sustained in superconducting (SC) Josephson junctions. Recently, these superconducting qubits have been coupled to electromagnetic resonators, in a manner analogous to cavity Quantum Electro Dynamics (QED) which describes the interaction between atoms and quantized oscillation modes in the quantum limit. On the other hand, there is yet no experimental evidence of a mode of a mechanical oscillator, such as that of a miniaturized vibrating string, to be chilled down to its quantum ground state. The main part of the proposal involves the use the coupling of Nanomechanical Resonators (NR) to SC qubits employed as artificial atoms in order to address the quantum-classical interface in mechanical motion. Similarly as the SC qubit can exchange quanta with electrical oscillators, it can, in principle, communicate with mechanical modes. The research will begin with demonstrating this kind of electromechanical interaction. In order to tackle experimental surprises, I plan on launching two parallel paths, one with a charge qubit, the other using a phase qubit. The formidable main goal is to experimentally reach the quantum ground state of a mechanical mode. I will investigate the following routes: Make a 1 GHz frequency NR, corresponding to 50 mK, which will reach the ground state at accessible temperatures. On the other hand, I propose to side-band cool a lower-frequency NR via the attached SC qubit. Near the quantum limit, I will start taking advantage of the NR as a building block of electromechanical quantum information. I also propose to push the QED setup of SC qubits coupled to electrical cavities towards more and more complicated states in order to test quantum mechanics in the nearly classical limit.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2009-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

AALTO KORKEAKOULUSAATIO SR
EU contribution
€ 1 372 999,99
Address
OTAKAARI 1
02150 Espoo
Finland

See on map

Region
Manner-Suomi Helsinki-Uusimaa Helsinki-Uusimaa
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0