Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Spiking neural models of auditory perception

Objective

In classical connectionism, the information is conveyed by the firing rate of neurons. Spiking neuron models offer an additional dimension to the rate: synchrony. Synchronous spike trains are more effective than uncorrelated ones in driving the responses of target neurons. Because neurons can encode their inputs in a sequence of precisely timed spikes, input similarity translates into synchronous spiking, which can be easily detected by afferent neurons. The dual properties of synchronization and coincidence detection lead to a new computing paradigm, where neurons perform a similarity operation instead of a summation. Because synaptic plasticity favor correlated neuron groups, synchrony-based computation should play an important role in developed neural circuits. The presence of neural correlations has been demonstrated in early sensory systems, but their computational role is still unclear. In auditory perception, the fine temporal structure of sounds is thought to play an important role, in particular for pitch perception and spatial localization of sounds. It has long been proposed that the auditory system exploits the structure of neural correlations to infer information about those properties, but it is still unclear how this computation is physiologically implemented. In this project, I propose to investigate synchrony-based computation and learning in the auditory system, using computational neural modeling. The expected impact of the project is 1) the development of spike-based neural network theory, 2) a better understanding of the role of neural synchronization in auditory perception, 3) industrial applications (music transcription, auditory scene analysis) and medical applications (stimulation procedures for cochlear implants) with neural simulation technology.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2009-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

ECOLE NORMALE SUPERIEURE
EU contribution
€ 1 244 640,00
Address
45, RUE D'ULM
75230 Paris
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0