Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

String theory and noncommutative geometry

Objective

I am interested in various algebraic-geometric aspects of string theory and its implications for gravity, cosmology or gauge theories. I am investigating how different kinds of algebraic structures (e.g. Lie groups, Hopf algebras, supersymmetry, and their deformations appearing in noncommutative geometry) act as symmetries of different physical models.
My main research topic is the study of applications of noncommutative geometry to physical systems, in particular to various kinds of gauge field theories, like theories with time-dependent backgrounds as they appear in string cosmology, as well as deformed supersymmetric theories and quantum groups. I have been able to find a cohomological approach which will enable me to solve these systems by using the rigidity of their algebroid structure to construct a suitable homotopy operator.
This technique, originally developed in the context of deformation quantization for symplectic and Poisson structures, when combined with other techniques developed in the framework of Hopf algebras, such as the Drinfel’d twist, will allow me to gain me useful insights about these physical models as well as about the differential geometric structure of Lie algebroids and Lie 2-algebras.
Another research topic, in which recently I am very interested, is the investigation of the geometry of exceptional Lie groups, such as G2, F4, E6, and their applications, e.g. for the construction of manifolds with G2 holonomy and as gauge groups for field theories which appear as low energy limits of string theories. Theories with G2 gauge group are relevant for quark confinement, while E6 is the most promising candidate as the symmetry for grand unification in particle physics. The same methods can be applied to other exceptional Lie groups, even E8. I have found a technique, which makes use of a suitable fibration of the group to generalize the Euler parametrization for SU(2), allowing me to compute explicitly the metric on the group manifolds.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IRG-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

UNIVERSITA DEGLI STUDI DI MILANO
EU contribution
€ 100 000,00
Address
Via Festa Del Perdono 7
20122 Milano
Italy

See on map

Region
Nord-Ovest Lombardia Milano
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0