Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Random walks on hyperbolic groups

Objective

The project lies at the confluent of different mathematical fields: probability theory, algebra, and geometry. There is a contribution of A. V. Vershik in a special Springer volume about the future of mathematics in the 21st century that points out the prospects and challenges that are comprised in the interplay of probability theory and algebra. Here random walk theory, a branch of probability theory, plays a mayor role. There are two points of view to look at the relation between probability theory, algebra, and geometry. The probabilistic viewpoint concerns all questions regarding the impact of the underlying structure on the behavior of the corresponding random walk. Typically one is interested in transience/recurrence, spectral radius, rate of escape, and central limit theorems. On the other hand, random walks are a useful tool to describe the structure that underlies the random walk. In particular, algebraic and geometric properties can be classified due to the behaviour of the corresponding random walks. The project falls exactly into this topic: we will study random walks on hyperbolic groups. The objectives are to prove a central limit theorem for random walks on hyperbolic groups and provide geometric interpretations of the asymptotic variance. This will arise from a geometric perspective in the flavour of the interpretation for the rate of escape in terms of entropy and requires deeper knowledge of hyperbolic geometry together with inspiration and new ideas. The project will settle the ground for future collaboration, not only between France and Germany but also on an European level, since the host institute and the applicant have strong European contacts. Furthermore, the project can be seen as a continuation and complement of the existing Marie Curie contract ``European Training Courses and Conferences in Group Theory''.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IEF-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

UNIVERSITE D'AIX MARSEILLE
EU contribution
€ 156 712,58
Address
BOULEVARD CHARLES LIVON 58 LE PHARO
13284 Marseille
France

See on map

Region
Provence-Alpes-Côte d’Azur Provence-Alpes-Côte d’Azur Bouches-du-Rhône
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (1)

My booklet 0 0