Objective
"The origin of ""high-temperature"" superconductivity is definitely one of the most elusive topics in modern solid-state physics. The twenty years that followed the discovery of unprecentedly high critical temperatures in copper oxides have been dominated by a dychotomy between the ""standard""; superconductors, normal metals in which electron-phonon interaction drives the superconducting pairing, and ""high-temperature""; superconductors, complex compounds in which superconductivity is most likely of electronic or magnetic origin. Even if the number of proposals in this regard is enormous, we believe that at the present stage we can move one big step forward. The positive circumstances are the appearance of a new player in the field, the iron-based materials discovered in 2008, and the development of theoretical tools able to deal with the main physical ingredients of the different supeconducting materials. The aim of this project is to overcome the electron-phonon/electronic dualism in the ""glue"", and prove that the key to high-temperature superconductivity is the anomaly of the normal state. More precisely, high-temperature superconductivity is the way in which the pathologies of anomalous metallic states are ""healed"". In this project we will build a theoretical approach to study ab initio superconductors beyond Migdal-Eliashberg theory, namely a combination of Density Functional Theory and Dynamical Mean-Field Theory extended to the superconducting state. In this way we will put the above physical idea on solid ground, and we will first show that it is actually realized in the already known superconductors by comparing normal state and superconducting states.The results obtained in the process can be used in a second step to design new superconductors, either in the same families as the existing ones and in principle even in other yet unknown families."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences condensed matter physics solid-state physics
- medical and health sciences basic medicine pathology
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2009-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
34136 Trieste
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.