Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

To develop a scratch resistance coating using a molecular self assembly nanotechnology for plastic products

Objective

The project aims to develop a novel high performance scratch resistant coating technology for plastic pieces at a low cost using an environmental friendly and tailor-made process, over a broad range of plastic materials. These coated plastics can substitute weighty materials, as metallic or glassy components, and high cost engineering plastic materials. The new coating technology to develop is based on self assembly nanotechnology. Nowadays, plastic materials present limited scratch and mar resistance when compared with materials as ceramics, glass or metals. After a short period of use, plastic parts surface is damaged and aesthetically defects appear (blisters, cracks, scratches…). Scratches can be an ideal breeding ground for bacteria, reducing the hygienic properties of plastics materials. These negative properties limit the usability of these materials in a broad range of applications and leading companies are making constant efforts to overcome this problem. NANOSCRATCH approach will provide a novel technology based on the facts that the surface of certain plastics can be modified through a mild oxidation and chemical functionalization process, using self-assembled molecules. This new technique will provide an effective bond between the plastic surface and the nanoparticle coating, due to a highly cross-linked network formed at the surface, avoiding the traditional adhesion problems of coatings applied onto plastics, due to its low polarity, while maintaining the aspect of the original part. The new technique involves three steps: mild oxidation, self-assembly and co-deposition of nanoparticles. Among the main potential applications, the project will focus on high scratch resistance plastic pieces for the automotive industry and white-goods appliances manufacture in order to replace weighty, expensive and non-recyclable Engineering Thermoplastics and glass by PP filled grades, transparent plastics (mainly PC) and ABS

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-SME-2008-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

BSG-SME - Research for SMEs

Coordinator

AIMPLAS - ASOCIACION DE INVESTIGACION DE MATERIALES PLASTICOS Y CONEXAS
EU contribution
€ 11 583,00
Address
VALENCIA PARC TECHNOLOGIC CALLE GUSTAVE EIFFEL 4
46980 Paterna
Spain

See on map

Region
Este Comunitat Valenciana Valencia/València
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (9)

My booklet 0 0