Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Dynamic nuclear polarization - enhanced high resolution solid-state NMR spectroscopy for atomic 3D structure determination of functionalized nanotubes and other nano-sized objects

Objective

This project aims at developing the instrumentation and methodology required to perform solid-state sub-nanometer scale structural studies by Nuclear Magnetic Resonance (NMR). In the last decades NMR has proven to be a priceless tool to probe structure and dynamics of systems as diverse as glasses, metal surfaces, polymers and proteins, etc. However, the low sensitivity of the technique currently limits its outreach in material science, chemistry and biology. In order to overcome this limitation, we plan to use a technique called Dynamic Nuclear polarization (DNP) which is able to hyperpolarize nuclear spins. The DNP phenomenon, discovered at low magnetic fields (< 0.3 T), is far from being new but its usage at high magnetic fields (5 to 20 T and more) constitutes an exciting ongoing challenge. Compared to traditional NMR where the signal originates from thermal polarization, DNP enables us to enhance the NMR signal to noise by 1 to 4 orders of magnitude (depending on the nuclei) by transferring the magnetization of unpaired electron spins (polarizing agents) to the surrounding nuclear spins. Utilizing emerging high frequency microwave technologies, optimized polarizing agents together with state of the high resolution solid-state NMR instrumentation and methods, we plan to develop original magnetic resonance experiments at high magnetic fields. This technique should allow bringing down the NMR detection threshold to micro/nano-molar concentration, studying larger molecular systems and performing multidimensional experiments orders of magnitude faster. The project will lead to numerous interdisciplinary applications to illustrate the potential of DNP-enhanced NMR to characterize new materials for the nanotechnologies (functionalized nanotubes, molecular wires, etc.), new polymers for energy (CNT embedded in polymers, etc.), and to determine the 3D atomic solid-state structure of biomolecules (membrane proteins, paramagnetic proteins, etc.).

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IEF-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
EU contribution
€ 176 803,79
Address
RUE LEBLANC 25
75015 PARIS 15
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0