Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Revealing the molecular architecture of integrin mediated cell adhesion

Objective

Cell adhesions play an important role in the organization, growth, maturation, and function of living cells. Interaction of cells with the extracellular matrix (ECM) plays an essential role in a variety of disease states , inflammation, and repair of damaged tissues. At the cellular level, many of the biological responses to external stimuli originate at adhesion loci, such as focal adhesions (FA), which link cells to the ECM . Cell adhesion is mediated by receptor proteins such as cadherins and integrins. The precise molecular composition, dynamics and signalling activity of these adhesion assemblies determine the specificity of adhesion-induced signals and their effects on the cell. However, characterization of the molecular architecture of FAs is highly challenging, and it thus remains unclear how these molecules function together, how they are recruited to the adhesion site, how they are turned over, and how they function in vivo. In this project, I aim to conduct an interdisciplinary study that will provide a quantum step forward in the understanding of the functional organization of FAs. We will analyze, for the first time, the three-dimensional structure of FAs in wild-type cells and in cells deficient in the specific proteins involved in the cell-adhesion machinery. We will study the effect of specific geometries on the functional architecture of focal adhesions in 3D. A combination of state-of-the-art technologies, such cryo-electron tomography of intact cells, gold cluster chemistry for in situ labeling, and modulation of the underlying matrix using micro- and nano-patterned adhesive surfaces, together with correlative light, atomic force and electron microscopy, will provide a hybrid approach for dissecting out the complex process of cell adhesion.In summary, this project addresses the properties of FAs across a wide range of complexities and dimensions, from macroscopic cellular phenomena to the physical nature of these molecular assemblies

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2009-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

University of Zurich
EU contribution
€ 1 167 631,79
Address
RAMISTRASSE 71
8006 ZURICH
Switzerland

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0