Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Innovative Design for Wind Energy Capture in Urban Environments

Objective

We propose a new approach for urban wind power to help the EU to meet renewable energy targets and make micro–generation acceptable in environmentally sensitive areas. Typically, the wind around buildings is too turbulent and slow to be of much use. Normal turbines need to be placed high above them which is expensive and attracts planning objections. If buildings could be used to augment turbine airspeeds, it’s estimated that the potential for energy capture in the built environment could exceed 10 TWh, creating CO2 savings of approximately 4 Megatonnes by 2020. We will develop a retro-fittable roof-mounted module that will be almost invisible from street level. It will accentuate the low pressure zone over a flat roof parapet and link it to high-pressure static air beneath using a tapered duct. The air speed in such a duct has been shown to exceed the free wind by more than 30%. Power increases with the square of air velocity, so a turbine in this region will generate more than double the power of a conventional turbine, and as a ducted fan it will cause significantly less noise and vibration. Further, we will use passively-warmed air injection to create a vortex in the duct, raising generator output by another 40%. The vortex can heat or chill air directly which, coupled to powered passive ventilation, might augment a building’s air conditioning and offset power consumption, cutting payback time still further. The potential EU market for building integrated wind turbines is €345m and we believe that we can capture a high proportion (20%) of it. Conventional wind turbines typically have payback periods of 15-30 years (depending on location) and our system has the potential to reduce this to 5 years. Regardless of the level of augmentation, this approach will significantly improve urban wind power viability and make wind power possible in wind-rich but planning-sensitive areas such as seaside towns and national park hillsides for the first time.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-SME-2008-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

BSG-SME - Research for SMEs

Coordinator

Torclad Limited
EU contribution
€ 414 309,00
Address
Princess Road East (West Walk House) 99
LE1 7LF Leicester
United Kingdom

See on map

Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (7)

My booklet 0 0