Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Mechanisms of retrotransposition in humans and consequences on cancer genomic plasticity

Objective

Retrotransposons are a class of highly repetitive sequences, which are very abundant in the human genome. They disperse by an RNA-based copy-and-paste mechanism, called retrotransposition. This process can drive profound genome rearrangements. Although generally silent, they are expressed in germ cells, in the early embryo, and in embryonic stem cells, which occasionally results in genetic diseases. Retrotransposons are also massively re-expressed in the large majority of cancers, but the importance and consequences of retrotransposition in human tumors have been poorly studied. Somatic retrotransposition is difficult to track in human tissue due to the highly repetitive and dispersed nature of these elements. Thus the questions we wish to address in this research proposal are the following: (i) What cellular pathways control retrotransposon copy number? This will be achieved by combining functional genomics and proteomics approaches to identify positive and negative regulators of retrotransposition in humans. (ii) What are the molecular mechanisms of retrotransposons replication? To answer this question, we will develop a cell-free assay that will contain the complete retrotransposition machinery. (iii) How retrotransposons participate in the normal and pathological remodeling of the human genome? To this purpose we are currently developing innovative approaches to track retrotransposition events in clinical samples, especially in tumor samples. Since LINE-1 elements (L1) are the most active and autonomous retroelements in our genome, we focus, at the moment, our investigations on this family. Understanding how the activity of retrotransposons is controlled will impact our knowledge of the mechanisms that lead to new genetic diseases or to cancer progression. Since mobile genetic elements are becoming important tools in insertional mutagenesis or gene-transfer technologies in mammals, our work should also help to improve their use in mammalian functional genomics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2009-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
EU contribution
€ 1 874 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0