Objective
Among the most defining events in physics during the last decade were the spectacular advances in the field of strongly correlated quantum many body systems: the observation of quantum phase transitions in optical lattices and the realization that many body entanglement can be exploited to build quantum computers are only two of the notable breakthroughs. The description of strongly correlated quantum systems and the associated entanglement structure is still largely unexplored territory. This field represents one of the big challenges and opportunities in theoretical physics. In a recent evolution, we showed that the tools developed in the context of quantum computing and entanglement theory lead to a novel understanding of the structure of the wavefunctions that arise as ground states of strongly correlated quantum Hamiltonians. This approach opens up a wealth of new research opportunities that will be investigated, such as a description of quantum phases of matter with nonlocal order parameters and an explicit characterization of quantum states exhibiting critical behaviour and/or topological quantum order. Such theories cannot be described within the conventional Landau theory of phase transitions. The theory of entanglement also provides a new language in which one can describe real-space renormalization group methods, and this is resulting in a long anticipated extension of their range of applicability. A crucial part of the project will consist of developing stable numerical methods that generalize the very successful DMRG method to two dimensions and to non-equilibrium situations. One of the main objectives is to simulate the phase diagram of the Hubbard model in two dimensions. Preliminary results are promising, and we are confident that this work will impact the way we understand, observe and manipulate the quantum world. This is especially relevant since quantum effects will play an increasingly dominant role in future technologies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences quantum physics
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences mathematics applied mathematics numerical analysis
- natural sciences physical sciences theoretical physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2009-StG
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
1010 Wien
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.