Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

An Integrated Chemical Platform to Elucidate Eukaryotic Sensing of Bacterial Crosstalk

Objective

The term quorum sensing (QS) describes the ability of a population of unicellular bacteria to act as a single multicellular organism in a cell-density-dependent manner. Bacteria achieve this feat by the use of small diffusible molecules to exchange information among themselves. Examples of QS-controlled behaviors are bioluminescence, virulence factor expression and biofilm formation. These processes are advantageous to a bacterial population only when they are carried out simultaneously by its members. In recent years, a surprising new role has been found for several QS molecules diverse eukaryotes have been found to react strongly to the presence of these compounds. My aim is to examine the hypothesis that diverse eukaryotic species have developed mechanisms to react to the presence of specific bacterial QS molecules in a receptor-mediated fashion. Specifically, we aim to identify receptors that are highly specific for the Pseudomonas aeruginosa QSM 3-oxo-C12-AHL, as no receptor has been identified yet. This is a significant challenge, that we will address developing an innovative platform of chemical, biochemical and microbiological investigations. Identification of specific QSM receptors in eukaryotes will allow us to further understand the complex mechanisms of coexistence and evolution of coexistence between prokaryotes and eukaryotes. The insight obtained from these experiments could lead to: a) an increased understanding of important principles that guide the evolution of symbiotic relationships between competing species; b) new approaches in the treatment of P. aeruginosa infections, as well as to potential new drugs for the treatment of autoimmune diseases; c) the development of an integrated platform that will enable the discovery of unknown receptors for small hydrophobic bioactive compounds.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2009-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

BEN-GURION UNIVERSITY OF THE NEGEV
EU contribution
€ 1 312 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (4)

My booklet 0 0