Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Hybrid Inorganic-Organic NanoElectronics

Objective

This project aims at combining inorganic and organic materials in hybrid nanoelectronic structures for addressing a set of key problems in solid-state physics: (1) the magnetic ordering of 2D spin systems and their interaction with conduction electrons, (2) the coherent transport properties of organic molecules, and (3) reliable electronic characterization of single nanostructures. For all objectives we will integrate top-down and bottom-up (self-assembly) techniques, benefitting from strong collaborations with leading chemistry groups. For Objective 1, we will apply self-assembled monolayers of organic paramagnetic molecules on various substrates. This geometry offers great tunability for the nature, density and ordering of spins, and for their interaction with underlying electrons. We will study (many-body) phenomena that lie at the very heart of solid-state physics: the Kondo effect, RKKY interaction, spin glasses and the 2D Ising/Heisenberg model, addressing open questions concerning the extension of the Kondo cloud, RKKY-Kondo competition, and the relevance for high-Tc superconductivity. For Objective 2, molecular monolayers are inserted in an electron interferometer, allowing a systematic study of molecular charge coherence. We will study how coherence depends on the molecule s characteristics, such as length and chemical composition. For Objective 3 we will attach single nanostructures (quantum dots) by an innovative self-assembly method to highly-conductive, selectively metallized DNA molecules, bridging the gap between nano and micro. A crucial advantage compared to conventional (top-down) nanocontacting schemes is the high control and reproducibility afforded by sequence-specificity of DNA hybridization, enabling a wide range of fascinating experiments.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2009-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

UNIVERSITEIT TWENTE
EU contribution
€ 1 750 000,00
Address
DRIENERLOLAAN 5
7522 NB Enschede
Netherlands

See on map

Region
Oost-Nederland Overijssel Twente
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0