Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Innovative CO2 capture

Objective

In post-combustion CO2 capture, a main bottleneck causing significant reduction in power plant efficiency and preventing cost effectiveness is the low flue gas CO2 partial pressure, limiting membrane flux, solvent selection and capacity. In pre-combustion CO2 capture, key bottlenecks are number of processing steps, possible low hydrogen pressure, and high hydrogen fraction in the fuel Global deployment of CO2 capture is restrained by a general need for prior removal of SO2. iCap seeks to remove these barriers by developing new technologies with potential for reducing the current energy penalty to 4-5% points in power plant efficiency, to combine SO2 and CO2 removal, and to reduce the avoidance cost to 15 €/tonne CO2. iCap will: Develop solvents forming CO2 hydrates or two liquid phases enabling drastically increased liquid phase CO2 capacity, radically decreasing solvent circulation rates, introducing a new regime in desorption energy requirement, and allowing CO2 desorption at elevated pressures; Develop combined SO2 and CO2 capture systems increasing dramatically the potential for large scale deployment of CCS in BRIC countries and for retrofit in Europe. Develop high permeability/ high selectivity low temperature polymer membranes, by designing ultra thin composite membranes from a polymeric matrix containing ceramic nano particles. Develop mixed proton-electron conducting dense ceramic-based H2 membranes offering the combined advantages of theoretically infinite selectivity, high mechanical strength and good stability. Develop and evaluate novel coal and gas-based power cycles that allows post-combustion CO2 captures at elevated pressures, thus reducing the separation costs radically. Integrate the improved separation technologies in brownfield and greenfield power plants, and in novel power cycles in order to meet the performance and cost targets of the project

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-ENERGY-2009-1
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CP - Collaborative project (generic)

Coordinator

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
EU contribution
€ 1 032 500,00
Address
HOGSKOLERINGEN 1
7491 Trondheim
Norway

See on map

Region
Norge Trøndelag Trøndelag
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (13)

My booklet 0 0