Objective
Molecular imprinting, an important methodology for the straightforward prepared of antibody-like polymers, is recently one of focuses in chemistry because of its importance in catalysis, separation and sensing. Described usually as a ‘from-key-to-lock’ process, the molecular imprinting recognizes and interacts with substrates basing on a specifically complementary framework. The present proposal aims to design ‘smart’ imprinted polymers capable of showing tunable catalysis. Inspired by recent advances in the ‘Smart’ technology, a unique hydrophilic/hydrophobic transition is created within the binding framework. The design of this transition will cause an opening/closing-tunable mechanism within the binding framework, thereby allowing/refusing the substrates in water accessible to the interior. In the opening state, the substrate in water can be freely accessible to the binding framework, thus making possible efficient interaction. Above the transition the blockage of access to the inner largely restricts the diffusion of substrates. In this way, such recognition and catalysis are comparable to an on/off-switchable process, which thus allows one to manipulate the activity by controlling the phase behaviours of prepared materials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
FP7-PEOPLE-IIF-2008
See other projects for this call
Funding Scheme
MC-IIF - International Incoming Fellowships (IIF)Coordinator
MK43 0AL Cranfield - Bedfordshire
United Kingdom