Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Generation of asymmetry in mitotic exit network (MEN) signaling

Objective

The mitotic exit network (MEN) is a signaling pathway that promotes exit from mitosis in Saccharomyces cerevisiae by maintaining the protein phosphatase Cdc14 released from the nucleolus into the nucleus and the cytoplasm, where it eventually promotes mitotic cyclin degradation. MEN resembles a RAS-like signaling cascade. The GTPase Tem1 and the two component GTPase-activating protein Bfa1-Bub2, which function at the top of the MEN, have been shown to localize only to the spindle pole body (SPB, the yeast’s centrosome) that enters the daughter cell during anaphase, while they are excluded from the SPB that stays in the mother cell. Based on our observations, the differential localization of Bfa1, Bub2, and Tem1 to SPBs is determined by a different efficiency in loading of the complex onto the SPBs that is dependent on specific microtubule-cortex interactions. We have also found that polarization of the actin cytoskeleton plays an important role in the generation of the asymmetry. However, the determinants of this asymmetry and the exact mechanism are still unknown. The objectives of this proposal are to: (i) Evaluate the role played on this asymmetry by proteins that either interact with the Tem1 complex or involved in other processes of generation of polarity; (ii) Perform genetic screens to identify genes required for the asymmetric localization of Bfa1, Bub2 and Tem1; (iii) Identify the regions within Bfa1, Bub2 and Tem1 that are necessary for their localization and for the generation of the asymmetry; (iv) Examine the consequences of disrupting the asymmetry in the Tem1 complex localization on the progression through the cell cycle. Answering these questions will increase our knowledge about the regulation of the exit from mitosis and the mechanisms that control the cell cycle. Since a key function of the MEN is to maintain ploidy, and ploidy is often affected in tumors, our research will also shed light on one of the key initiation steps in tumor formation.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IRG-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

UNIVERSIDAD DE SEVILLA
EU contribution
€ 100 000,00
Address
CALLE S. FERNANDO 4
41004 Sevilla
Spain

See on map

Region
Sur Andalucía Sevilla
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0