Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Acoustics of friction under light loads

Objective

Understanding the properties and consequences of friction under light normal loads is fundamental to areas such as tactile sensing, haptic systems used in robotic gripping of sensitive objects, and characterization of products rangıng from the softness of fabrics to effects of lotions on skin. In tactile sensing, as a finger is lightly rubbed over a surface, the mechanoreceptors in the dermis become excited and send signals to the brain for processing. Their excitation results from the asperities, adhesion, and other geometric and chemical surface properties that come into contact with the skin. These same sources also give rise to vibration and sound as two surfaces are in sliding friction even under light load, such as a finger pad over a silk fabric. Whereas the mechanoreceptors respond around 200 - 300 Hertz, spectrum of the actual sounds and vibrations that are generated can go beyond these values, thus presenting additional opportunities for surface characterisation through the acoustics response. Only a limited number of those address friction sounds and vibrations under light loads. Studies that address soft materials have not yet been reported. Much of the previous work in this area relates to perception and tactile sensing with limited attention to the generation mechanisms of sound and vibration between soft surfaces. The proposed project builds on the principle investigator's experience in this area for the past two decades. The project will focus on modeling friction forces over an area the size of a finger pad that moves over a surface and develop predictive models of the sound and vibration that emanate from such a moving contact area. The novelty the project brings includes consideration of materials and also adhesive surfaces, which are important in gripping. Another outcome of this project will be a new test set up that can mimic a finger rubbing over a material under light friction and has the ability simultaneously measure dynamic quantities.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

BILKENT UNIVERSITESI VAKIF
EU contribution
€ 100 000,00
Address
ESKISEHIR YOLU 8 KM
06800 Bilkent Ankara
Türkiye

See on map

Region
Batı Anadolu Ankara Ankara
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0